
Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3465 http://www.webology.org

Investigating Role Of Functional, Coupling, And Constraint

Complexity Metrics In Component Based Software

Engineering

PARUL1 , RAJENDER SINGH2

1(Research scholar) Department of computer science & Application Maharshi Dayanand

University, Rohtak, Haryana, India.

2(Professor) Department of computer science & Application, Maharshi Dayanand University,

Rohtak, Haryana, India.

Abstract: Component-based software metrics are used to measure the quality and risk of

component-based software. Measurement begins with an assessment of the task's most critical

components. Split them into sub-characteristics or characteristics thereafter. As a consequence,

these more subtle sub-features begin to emerge in characteristics. This definition-based metric

property is used to get the required metrics. Prior studies have studied software metrics based on

component composition. Too little research has been done on component-based software metrics

so far. Studies like this have a very specific focus. Programming modules were compared in terms

of usefulness, new features and the difficulty and complexity of configuring the modules. In the

suggested research, formulas for calculating the functional, coupling, and constraint complexity

metrics were studied.

Keyword: CBSE, CBD, Software component, Software reusability, Software metric.

[1] INTRODUCTION

Component-based architecture allows for the reuse of classes (components required to construct

an application). The spiral concept is used in a variety of ways in this design. We may thank

evolution for this concept. As a result, iterative software design is a viable option. Component-

based development (CBD) simplifies the design and development of computer systems by using

reusable software components. CBD has shifted its focus to software system design.

Component Based Software Engineering (CBSE)

Component-based software engineering (CBSE), sometimes known as components-based

development (CBD), is a branch of software engineering that focuses on decoupling the numerous

components that make up an agiven software system. This is a reuse-based technique for putting

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3466 http://www.webology.org

together systems of loosely connected components. In both the short and long term, this technique

strives to bring about a broad range of advantages for both the software itself and the sponsoring

corporations.

There is a strong connection between components and service-oriented architecture. Adding new

features to an existing component is one of the benefits of using a web service. Web services and

service-oriented architectures, for example, are examples of this (SOA).

Fig 1 Component Based Software Engineering (CBSE)

Software Component

Software packages, online services, web resources, and modules are the most frequent discrete

components of software (or data). The system's processes are divided into distinct components to

guarantee that all data and functions inside each component are semantically connected (just as

with the contents of classes). Be a consequence of this mindset, components are typically referred

to as modular and cohesive.

Objects (rather than classes), collections of objects (as in object-oriented programming), and some

type of binary or textual interface description language are all popular forms of software

components that may operate independently of each other on a computer (IDL). The component's

functioning is not affected by changes to the code.

Component model

Specifying the characteristics of components as well as how to put them together is the purpose of

a component model.

There have been many different component models proposed by researchers and practitioners over

the last several decades. This section offers a breakdown of the existing models of components.

Loyalty Programs

Hotels Res

Holiday

Reservation

Session

Credit Card

Billing

Car Res Air Res

I Loyalty Program

IHolidayRes

ICarRe
IAirRe

s

https://en.wikipedia.org/wiki/Component_model

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3467 http://www.webology.org

The EJB, COM,.NET, X-MAN, and CORBA models from the EJB family of JavaBean

implementations are examples of component models.

Software metric

Software metrics come in a wide variety of forms and may be used to assess the overall quality of

a software system or process. Despite the fact that metrics are functions and measures are the

values that are the consequence of applying metrics, the terms are commonly used interchangeably.

Since quantitative metrics are essential in many domains, computer science practitioners and

theoreticians are always trying to apply similar methodologies to software development. For a

number of purposes, including budget and schedule planning, cost estimates, quality assurance,

and software debugging and optimization, we need measures that are precise and repeatable. We

also need to know how to best allocate work to our staff..

Software reusability

To be reusable, assets like code, components, test suites, designs, and documentation must have

been previously generated in the context of software engineering or computer science. Reusability

encompasses the whole process of creating, packing, distributing, installing, configuring,

deploying, maintaining, and upgrading. Software that seems to be reusable from a design

viewpoint may not really be reusable if these issues are addressed. Reusability is the ability of a

piece of software to be reused in the future.

[2] LITERATURE REVIEW

Earlier this year, Sonal Geholt [1] published a comparison of several complexity measures created

by various writers. The complexity of component-based software is measured using a variety of

metrics, including instance variables, instance methods, control flow, and interface techniques,

among others. The comparison is based on a number of quality parameters, such as maintainability,

Integrity, complexity, testability, customizability, and so on.

In 2014, Chander Diwaker [2] resulted in increased production, greater quality, reduced

development time and costs. Metrics for software quality play a significant role in assessing and

enhancing the overall quality of software products. Software development and deployment

methodologies are guided by these metrics. To achieve quality and manage risk in a component-

based system, metrics are used to assess the elements that influence risk and quality.

Component reuse and cost-savings advantages of component reusability were highlighted by

Lovepreet Kaur [3] in a paper published in 2015. Developers that want to create reusable software

products or salvage useable components from old software might follow these guidelines. CED-

adopting companies may also reap the benefits of these principles for quality and productivity

development.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3468 http://www.webology.org

[4] Various aspects of CBSE with its associated metrics were outlined by Kiran Narang in 2018.

Using metrics, a developer is able to determine the risk factor and lower it prior to the building of

a system. They require metrics to evaluate the quality, reusability, functionality, portability, and

understandability of each component they choose from the market. Many scholars have established

many measures for CBSE. Only a handful of them have any practical use.

Component-based metrics were the focus of Sakshi Patel's [5] research in 2016. On the basis of

both functional and non-functional features of software, this article compares several component-

based metrics and discusses how this new method differs from any previous strategy for software

development.. Component-based metrics are designed to promote reusability and save

development costs and time. Quality and risk management are assessed using these measures.

Using black box components, Sachin Kumar [6] suggested a method in 2014 for determining the

coupling complexity of software. On the basis of the interconnections between components, the

suggested metric is presented. Traditional metrics, on the other hand, don't apply to a black box

component since the component's source code is unavailable. Components' black box nature makes

it impossible to gauge software's complexity.

Software matrixes were developed in 2012 by Prakriti Trivedi [7] to verify the relationship

between software components and applications. [7] After employing this component, the quality

of the programme depends on how strong this relationship is. Finally, the aggregate metrics will

provide the ultimate result in terms of the component's application's boundless. When employing

these components, the most important question is whether or whether they are advantageous or

not. The same question is being addressed in this planned effort.

It was in 2012 that Majdi Abdellatief [8] published a thorough mapping analysis of different

metrics that had been developed to quantify the quality of CBSS and its components. [8] Seventeen

ideas may be used to assess CBSSs as a whole, while fourteen proposals could be used to assess

particular components without the others. Software components that were measured are evaluated

and explained in detail. A small number of the measures that have been put out are well defined.

The original studies' quality evaluation found several flaws and provided advice for how to

strengthen and broaden the acceptability of metrics. Although it is difficult to quantify a CBSS

and its components, this remains a problem. So much work must be put into developing a better

method of evaluating in the future.

According to Majdi Abdellatief [9], structural design of Component-based software systems was

one of Majdi's primary concerns in 2012. (CBSS). Based on the notion of Component Information

Flow, two sets of metrics, namely Component Information Flow Metrics and Component Coupling

Metrics, are provided. We also explore the reasons for and potential usage of system- and

component-level metrics. The suggested measures seem to be quite intuitive, according on

preliminary findings from our ongoing empirical study.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3469 http://www.webology.org

This paradigm was first proposed by Danail Hristov [10] in 2012, with the goal of organizing our

collection of reusability indicators for component-based software development. The lack of a

documented paradigm for describing software reusability and establishing relevant metrics has

been frustrating. However, the adoption of component reuse in software development will be

simplified and accelerated if a thorough understanding of reusability and appropriate and simple

metrics for quantifying reusability are provided.

Table 1 Literature survey

S

no.

Author / year Title Methodology Objectives

1 Sonal Gehlot /

2019

Complexity Metrics for

Component Based

Software — A

Comparative Study

CBSE Matrics To perform

comparative analysis of

CBSE metric

2 Chander

Diwaker / 2019

Metrics Used In

Component Based

Software Engineering

CBSE matrix To consider the metrics

used in software

engineering

3 Lovepreet

Kaur / 2015

Quality Enhancement in

Reusable Issues in

Component – Based

Development

Software Matrics To improve quality for

reusable components.

4 Kiran Narang /

2018

Comparative Analysis of

Component Based

Software Engineering

Metrics

Software Matrics To perform

comparative analysis of

CBSE metrics

5 Sakshi Patel /

2016

A Study of Component

Based Software System

Software system Considering need and

scope of CBSE

6 Sachin Kumar /

2014

Coupling Metric to

Measure the Complexity

of Component Based

Software through

Interfaces

CBSE Matrics Considering coupling

metric to check the

complexity of CBSE

7 Prakriti Trivedi

/ 2012

Software Metrics to

Estimate Software

Quality using Software

Component Reusability

Software Metrics Calculating quality of

software with support

of component

reusability.

8 Majdi

Abdellatief /

2012

A mapping study to

investigate component-

based software system

metrics

Software Metrics To study need of

component based

metrics

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3470 http://www.webology.org

9 Majdi

Abdellatief /

2012

Component-based

Software System

Dependency Metrics

based on Component

Information Flow

Measurements

CBSE Matrics Considering

dependency of metrics

over component

information flow

10 Danail Hristov

/ 2012

Structuring Software

Reusability Metrics for

Component-Based

Software Development

Software Metrics To structure the metrics

for reusability

[3] CBSE MATRIX

Component based software metrics are those metrics which will measure the quality and manage

the risk of component based software. To build an efficient metrics, first identify the main

characteristics of work. After that divide them or break down into sub-characteristics [15]. Then

these refined sub characteristics are appearing in attributes. These attributes based on metric

definitions are used to get required metrics.

A. Metric Suite

This metrics structure is represented in the form of tree. In component based software engineering

there are two types of metrics: 1) Non-functional Metrics 2) Functional Metrics[16-32].

CBSE Metrics

Non Functional Metrics Functional Metrics

Producers Consumer
Producer Consumer

Reusability

Portability

Usability
Suitability

Complexity

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3471 http://www.webology.org

Fig 2 CBSE Matrices representation

In this we are having various metrics based on various dimensions.

i) Suitability Metrics: The degree to which components fulfill the confine requirement. The

component suitability is the nature that can be determined after the component gets installed [16].

For suitability there are two types of metrics based on different perspective[32-48]:

Required Functionality (RF): It comes under producer perspective. In this only required

functionality need to be checked that must be satisfied.

RF =
No.of useful functionality components that are provided

Total count of functionalities required by the CBSE

Increase in the value of RF will increase suitability of component.

Extra Functionality (EF): It comes under consumer perspective. In this extra functionalities are

needed to be checked.EF =
No.of extra functionalities given by the Components

Total no.of functionalities necessary by component based system

As the value of EF decrease the suitability will increase because increase in EF will increase the

unwanted functionalities.

ii) Complexity: complexity of software depends upon its complexity attributes such as coupling,

cohesion etc. The quality of software components, its interfaces and specifications are computed

by complexity metrics. The more demand of quality will automatically increase the complexity of

component. In this one metrics is based on producer perspective and two for consumer’s

perspective.

Component coupling (COC): It comes under producer perspective. In this internal structure of

component is checked i.e. classes and relationship between them.

COC =
No. of other components sharing attribute or methods

Total No. of possible sharing pairs in the component − based application

Interface complexity: It comes under consumer perspective. The quality characteristics such as

usability, portability, performance and reusability are evaluated by complexity metrics [5]. More

complex interface from user point of view will create testing and debugging problem. In this there

are two metrics:

Constraints complexity (CTC):

CTC =
No. of constraints

No. of properties and operation in an Interface

Configuration Complexity (CFC):

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3472 http://www.webology.org

CFC =
No. of configuration

No. of context of use of the components

iii) Component coupling complexity metrics for black box component:

CCCM (BB) = FICM (BB) + FOCM (BB)

Where FICM (BB) is Fan-in complexity Metric used to compute the coupling complexity due to

received information from additional component and FOCM is fan-out complexity metrics which

is used to compute the complexity because of leaving information

iv) Reusability: The degree to which a component can be used reused by software and some given

application. It is the quality of software to improve productivity. There are various sub factors of

reusability as shown in figure.

Figure 3 Component Reusability Tree

Portability: In this external dependency is evaluated.

ED =
Portability: In this external dependency is evaluated.

Total No. of methods (Read/ Write)

Confidence: In this maturity level of reusable component is calculated

Mat = DF + CR

DF= No. of faults detected

CR= No. of changes Requests

[4] PROPOSED MODEL

In proposed model two different programming modules have been considered to compare the

required functionality, extra functionality, component coupling, constraints complexity,

configuration complexity. In proposed work the equations used to find the functionality, coupling,

constraint complexity configuration complexity metric have been considered.

Reusability

Portability Confidence

External dependence
Maturity Certification

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3473 http://www.webology.org

Fig 4 Process flow of proposed work

Table 2 Chart of functionality components, attribute, constraint, possible sharing pairs along

with external dependency in case of library management and inventory management system.

 Library management

Programming module

Inventory management

Programming module

Count of useful functionality

components that are provided

30 45

Total count of functionalities

required by the CBSE

50 60

Count of extra functionalities

given by the Components

10 9

Total count of functionalities

necessary by component

based system

15 10

Count of other components

sharing attribute or methods

14 18

Total count of possible

sharing pairs in the

component-based application

20 25

Count of constraints 24 35

Count of properties and

operation in an Interface

40 45

Count of configuration 5 6

Count of context of use of the

components

10 10

•Data collection

•Functionality components, attribute, constraint, possible sharing pairs
along with external dependency .

Phase 1

•Data classification

•Collected dataset is systematically classified for library management and
inventory management system

Phase 2

•Metric comutation

•Calculate Suitability Metrics, Complexity metric and external dependency
metrics

Phase 3

•Comparison

•Compare the calculated metrics in both casesPhase 4

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3474 http://www.webology.org

Portability of external

dependency

17 23

Total count of methods

(Read/ Write)

80 85

[5] RESLUT AND DISCUSION

This section has focused on finding the suitability, complexity, external dependency for library

management and inventory management.

5.1 SUITABILITY METRIC

Simulation of Suitability metric for Library management Programming module

RF (a) =
No.of useful functionality components that are provided

Total count of functionalities required by the CBSE

RF=30/50=0.6

EF (a) =
No. of extra functionalities given by the Components

Total no. of functionalities necessary by component based system

EF=10/15=0.667

Simulation of Suitability metric for Inventory management Programming module

RF (b) =
No.of useful functionality components that are provided

Total count of functionalities required by the CBSE

RF= 45/60=0.75

EF (b) =
No. of extra functionalities given by the Components

Total no. of functionalities necessary by component based system

EF=9/10=0.9

5.2 COMPLEXITY METRIC

Simulation of Complexity metric for Library management Programming module

Component coupling (COC):

COC (a)=
No.of other components sharing attribute or methods

Total No.of possible sharing pairs in the component−based application

COC=14/20=0.7

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3475 http://www.webology.org

Constraints complexity (CTC):

CTC (a) =
No. of constraints

No. of properties and operation in an Interface

CTC=24/40=0.6

Configuration Complexity (CFC):

CFC (a) =
No. of configuration

No. of context of use of the components

CFC=5/10=0.5

Simulation of Complexity metric for Inventory management Programming module

Component coupling (COC):

COC (b)=
No.of other components sharing attribute or methods

Total No.of possible sharing pairs in the component−based application

COC=18/25=0.72

Constraints complexity (CTC):

CTC (b) =
No. of constraints

No. of properties and operation in an Interface

CTC=35/45=0.778

Configuration Complexity (CFC):

CFC(b) =
No. of configuration

No. of context of use of the components

CFC=6/10=0.6

5.3 EXTERNAL DEPENDENCY

External dependency for Library management Programming module

ED(a) =
Portability: In this external dependency is evaluated.

Total No. of methods (Read/ Write)

ED=17/80=0.2125

External dependency for Inventory management Programming module

ED(b) =
Portability: In this external dependency is evaluated.

Total No. of methods (Read/ Write)

ED=23/85=0.27

5.4 COMPARATIVE ANALYSIS

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3476 http://www.webology.org

This section has presented comparative analysis of required functionality, extra

functionality,

Table 3 Comparative analysis of programming Module for RF

Programming Module Required Functionality (RF)

Library Management 0.60

Inventory Management 0.75

Fig 5 Comparative analysis of programming Module for Required functionality

Table 4 Comparative analysis of programming Module for EF

Programming module Extra Functionality (EF)

Library Management 0.67

Inventory Management 0.90

Fig 6 Comparative analysis of programming Module for Extra Functionality

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Library Management Inventory
Management

R
e

q
u

ir
e

d
 F

u
n

ct
io

n
al

it
y

Required Functionality (RF)

Library Management

Inventory Management

0

0.2

0.4

0.6

0.8

1

Library
Management

Inventory
Management

Ex
tr

a
Fu

n
ct

io
n

al
it

y

Extra Functionality (EF)

Library Management

Inventory
Management

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3477 http://www.webology.org

Table 5 Comparative analysis of programming Module for Component coupling

Programming module Component Coupling (COC)

Library Management 0.70

Inventory Management 0.72

Fig 7 Comparative analysis of programming Module for COC

Table 6 Comparative analysis of programming Module for CTC

Programming Module Constraints Complexity (CTC)

Library Management 0.60

Inventory Management 0.78

Fig 8 Comparative analysis of programming Module for CTC

0.69

0.7

0.71

0.72

0.73

Library
Management

Inventory
Management

C
o

m
p

o
n

e
n

t
C

o
u

p
lin

g
(C

O
C

)

Component Coupling (COC)

Library Management

Inventory Management

0

0.2

0.4

0.6

0.8

1

Library
Management

Inventory
ManagementC

o
n

st
ra

in
ts

 C
o

m
p

le
xi

ty
 (

C
TC

)

Constraints Complexity (CTC)

Library Management

Inventory
Management

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3478 http://www.webology.org

Table 7 Comparative analysis of programming Module for CFC

Programming Module Configuration Complexity (CFC)

Library Management 0.50

Inventory Management 0.60

Fig 9 Comparative analysis of programming Module for EF

Table 8 Comparative analysis of programming Module for ED

Programming Module External Dependency (ED)

Library Management 0.21

Inventory Management 0.27

Fig 10 Comparative analysis of programming Module for ED

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Library Management Inventory
ManagementC

o
n

fi
gu

ra
ti

o
n

 C
o

m
p

le
xi

ty
 (

C
FC

)

Configuration Complexity (CFC)

Library Management

Inventory Management

0

0.1

0.2

0.3

Library
Management

Inventory
Management

Ex
te

rn
al

 D
e

p
e

n
d

e
n

cy

(E
D

)

External Dependency (ED)

Library Management

Inventory Management

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3479 http://www.webology.org

[6] CONCLUSION

In proposed work, we are representing the simulation process at different metrics. At Suitability

metric, simulation of RF is 0.60 and EF is 0.67 for Library management Programming module

and RF is 0.75 and EF is 0.9 for Inventory management Programming module. At Complexity

Metric, Component coupling (COC) is 0.70, Constraints complexity (CTC)is 0.60 and

Configuration Complexity (CFC) is 0.72 for Library management Programming module and

Component coupling (COC) is 0.778, Constraints complexity (CTC)is 0.60 and Configuration

Complexity (CFC) is 0.60 for Inventory management Programming module. At External

Dependency, for Library management Programming module is 0.2125 and for Inventory

management Programming module is 0.27.

REFFERENCES

1. Sonal Gehlot, Pooja Rana, Rajender Singh, (2019), Complexity Metrics for Component Based

Software — A Comparative Study. doi: 10.17706/jcp.14.6 389-396

2. Chander Diwaker , Sonam Rani2 , Pradeep Tomar , (2014), Metrics Used In Component Based

Software Engineering. IJITKM Special Issue (ICFTEM-2014) May 2014 pp. 46-50 (ISSN

0973-4414).

3. Lovepreet Kaur, (2015), Quality Enhancement in Reusable Issues in Component – Based

Development. ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE), IJRECE VOL. 3

ISSUE 1 JAN-MAR 2015.

4. Kiran Narang, Dr. Puneet Goswami, (2018), Comparative Analysis of Component Based

Software Engineering Metrics, DOI: 10.1109/CONFLUENCE.2018.8443016.

5. Sakshi Patel, Jagdeep Kaur, (2016), A Study of Component Based Software System.

International Conference on Computing, Communication and Automation (ICCCA2016).

6. Sachin Kumar, Pradeep Tomar, Reetika Nagar, Suchita Yadav,“Coupling Metric to Measure

the Complexity of Component Based Software through Interfaces”, April 2014

7. Prakriti Trivedi, Rajeev Kumar, “Software Metrics to Estimate Software Quality using

Software Component Reusability”, IJCSI International Journal of Computer Science Issues,

Vol. 9, Issue 2, No 2, March 2012.

8. Majdi Abdellatief∗, Abu Bakar Md Sultan, Abdul Azim Abdul Ghani1, Marzanah A. Jabar,

“A mapping study to investigate component-based software system metrics”, jo u rn al

homepage: www.elsevier.com, 5 October 2012.

9. Majdi Abdellatiefab, Abu BakarMd Sultana, Abdul AzimAbdGhania, Marzanah A.Jabara,

“Component-based Software System Dependency Metrics based on Component Information

Flow Measurements” ICSEA: The Sixth International Conference on Software Engineering

Advances, 2012.

10. Danail Hristov, Oliver Hummel, Mahmudul Huq, Werner Janjic, “Structuring Software

Reusability Metrics for Component-Based Software Development”, ICSEA: The Seventh

International Conference on Software Engineering Advances, 2012.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3480 http://www.webology.org

11. N. Gehlot and J.Kaur, “Dynamic Inheritance Coupling Metric-Design and Analysis for

Assessing Reusability”, Int. J. Software Engineering Technology and Applications, Vol.1,

No.1, PP. 118-133, 2015

12. V. Subedha, S. Sridhar, “Design of Dynamic Component Reuse and Reusability Metrics

Library for Reusable Software Components in Context Level”, February 2012.

13. Pooja Rana Rajender Singh, “A Study of Component Based Complexity Metrics”, November

2014.

14. V. L. Narasimhan and B. Hendradjaya, “A New Suite of Metrics for the Integration of

Software Components”, 2007

15. P. Edith Linda, V. Manju Bashini, S. Gomathi, “Metrics for Component Based Measurement

Tools”, International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-

2011.

16. Vinay Tiwari, Dr. R.K. Pandey, “Open Source Software and Reliability Metrics”,

International Journal of Advanced Research in Computer and Communication Engineering

Vol. 1, Issue 10, December 2012.

17. A.Aloysius and K.Maheswaran, “A Review on Component Based Software Metrics”, 22

January 2015

18. K.P. Srinivasan1 and T. Devi, “Software Metrics Validation Methodologies In Software

Engineering”, International Journal of Software Engineering & Applications (IJSEA), Vol.5,

No.6, November 2014.

19. Gurdev Singh, Dilbag Singh, Vikram Singh, “A Study of Software Metrics”, International

Journal of Computational Engineering & Management, Jan 2011, Vol. 11, pp. 22-27.

20. Abhikriti Narwal, “Empirical Evaluation of Metrics for Component Based Software Systems”,

International Journal of Latest Research in Science and Technology, Dec 2012, Vol 1, Issue 4,

pp. 373-378.

21. Sidhu Pravneet, “Quality metrics Implementation in Component based Software Engineering

using AI Back Propagation Algorithm Software Component”, International Journal of

Engineering and Management Sciences, 2012, Vol. 3(2), pp. 109-114.

22. Kshirsagar, P. R., Chippalkatti, P. P., & Karve, S. M. (2018) Optimum Spread for Generalized

Regression Neural Network using Particle Swarm Intelligence, Jour of Adv Research in

Dynamical & Control Systems, Vol. 10, 04-Special Issue, 2018

23. Taranjeet Kaur, Rupinder Kaur, “Comparison of various Lacks of Cohesion Metrics”,

International Journal of Engineering and Advanced Technology, Feb 2013, Vol. 2, Issue 3, pp.

252-254.

24. Divya Chaudhary, Prof. Rajender Singh Chillar, “Component Base Software Engineering

Systems: Process and Metrics”, International Journal of Advanced Research in Computer

Science and Software Engineering, July 2013, Vol. 3, Issue 7, pp. 91-95.

25. Umesh Kumar Tiwari and Santosh Kumar, (2021), Component-Based Software Engineering

Methods and Metrics. 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor

& Francis Group, LLC.

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3481 http://www.webology.org

26. Kshirsagar, P. R., Chippalkatti, P. P., & Karve, S. M. (2018). Performance optimization of

neural network using GA incorporated PSO. Journal of Advanced Research in Dynamical and

Control Systems, 10(4).

27. S. Sundaramurthy, C. Saravanabhavan, and P. Kshirsagar, “Prediction and classification of

rheumatoid arthritis using ensemble machine learning approaches,” in 2020 International

Conference on Decision Aid Sciences and Application (DASA), pp. 17–21, Sakheer, Bahrain,

2020.

28. Kshirsagar, Pravin R., et al. "Automation Monitoring With Sensors For Detecting Covid Using

Backpropagation Algorithm." KSII Transactions on Internet and Information Systems (TIIS)

15.7 (2021): 2414-2433.

29. Jude, A.B., Singh, D., Islam, S. et al. An Artificial Intelligence Based Predictive Approach for

Smart Waste Management. Wireless PersCommun (2021). https://doi.org/10.1007/s11277-

021-08803-7.

30. B. Prabhu Kavin, Sagar Karki, S. Hemalatha, Deepmala Singh, R. Vijayalakshmi, M.

Thangamani, Sulaima Lebbe Abdul Haleem, Deepa Jose, Vineet Tirth, Pravin R. Kshirsagar,

Amsalu Gosu Adigo, "Machine Learning-Based Secure Data Acquisition for Fake Accounts

Detection in Future Mobile Communication Networks", Wireless Communications and

Mobile Computing, vol. 2022, Article

ID 6356152, 10 pages, 2022. https://doi.org/10.1155/2022/6356152

31. Pravin Kshirsagar et.al (2016), “Brain Tumor classification and Detection using Neural

Network”, DOI: 10.13140/RG.2.2.26169.72805

32. Pravin Kshirsagar et. al., “OPERATIONAL COLLECTION STRATEGY FOR

MONITORING SMART WASTE MANAGEMENT SYSTEM USING SHORTEST PATH

ALGORITHM”, Journal of Environmental Protection and Ecology, Vol. 22, Issue 2, pp. 566-

577,2021

33. M. A. BERLIN et. al., “NOVEL HYBRID ARTIFICIAL INTELLIGENCE-BASED

ALGORITHM TO DETERMINE THE EFFECTS OF AIR POLLUTION ON HUMAN

ELECTROENCEPHALOGRAM SIGNALS”, Journal of Environmental Protection and

Ecology 22, No 5, 1825–1835 (2021)

34. M. ABUL HASAN et. al., “INTERNET OF THINGS AND IT’S APPLICATION IN

INDUSTRY 4.0 FOR SMART WASTE MANAGEMENT” Journal of Environmental

Protection and Ecology 22, No 6, 2368–2378 (2021).

35. Oza S. et al. (2020) IoT: The Future for Quality of Services. In: Kumar A., Mozar S. (eds)

ICCCE 2019. Lecture Notes in Electrical Engineering, vol 570. Springer, Singapore.

https://doi.org/10.1007/978-981-13-8715-9_35

36. Sathawane, N.K.S., Kshirsagar, P.: Prediction and Analysis of ECG Signal Behaviour using

Soft Computing, International Journal of Research in Engineering & Technology, Vol. 2, Issue

5, pp. 199, May (2014)

37. P. Kshirsagar and S. Akojwar, "Classification & Detection of Neurological Disorders using

ICA & AR as Feature Extractor", Int. J. Ser. Eng. Sci. IJSES, vol. 1, no. 1, Jan. 2015.

https://doi.org/10.1007/s11277-021-08803-7
https://doi.org/10.1007/s11277-021-08803-7
https://doi.org/10.1155/2022/6356152
https://doi.org/10.1007/978-981-13-8715-9_35

Webology (ISSN: 1735-188X)

Volume 18, Number 6, 2021

3482 http://www.webology.org

38. Pravin Kshirsagar, Dr.Sudhir Akojwar, “Classification and Prediction of Epilepsy using

FFBPNN with PSO”, IEEE International Conference on Communication Networks, 2015.

39. P. Kshirsagar, S. Akojwar, Nidhi D. Bajaj , “A hybridised neural network and optimisation

algorithms for prediction and classification of neurological disorders” International Journal of

Biomedical Engineering and Technology ,vol. 28,Issue 4,Pp. 307-321,2018.

40. P. Kshirsagar and S. Akojwar, "Novel approach for classification and prediction of non linear

chaotic databases," 2016 International Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), 2016, pp. 514-518, doi: 10.1109/ICEEOT.2016.7755667,2016

41. Kshirsagar, P.R., Akojwar, S.G., Dhanoriya, R, “ Classification of ECG-signals using artificial

neural networks”, In: Proceedings of International Conference on Intelligent Technologies and

Engineering Systems, Lecture Notes in Electrical Engineering, vol. 345. Springer, Cham

(2014).

42. P. Kshirsagar and S. Akojwar, “Optimization of BPNN parameters using PSO for EEG

signals,” ICCASP/ICMMD-2016. Advances in Intelligent Systems Research. Vol. 137, Pp.

385-394,2016

43. Pravin Kshirsagar, Nagaraj Balakrishnan & Arpit Deepak Yadav “Modelling of optimised

neural network for classification and prediction of benchmark datasets”

, Computer Methods in Biomechanics and Biomedical Engineering: Imaging &

Visualization, 8:4, 426-435, DOI: 10.1080/21681163.2019.1711457,2020

44. Dr. Sudhir Akojwar, Pravin Kshirsagar, Vijetalaxmi Pai “Feature Extraction of EEG Signals

using Wavelet and Principal Component analysis”, National Conference on Research Trends

In Electronics, Computer Science & Information Technology and Doctoral Research Meet,

Feb 21st & 22nd ,2014.

45. S. Akojwar and P. Kshirsagar, “A Novel Probabilistic-PSO Based Learning Algorithm for

Optimization of Neural Networks for Benchmark Problems”, Wseas Transactions on

Electronics, Vol. 7, pp. 79-84, 2016.

46. Sudhir G. Akojwar, Pravin R. Kshirsagar, “ Performance Evolution of Optimization

Techniques for Mathematical Benchmark Functions”. International Journal of Computers, 1,

231-236,2016.

47. Pravin Kshirsagar And Sudhir Akojwar “Hybrid Heuristic Optimization for Benchmark

Datasets”, International Journal of Computer Applications (0975 – 8887) Volume 146 – No.7,

July 2016

48. Kshirsagar, P., Akojwar, S.: ‘ Classification of human emotions using EEG signals’, Int. J.

Comput. Sci., 2016, 146, (7), pp. 17– 23

https://doi.org/10.1080/21681163.2019.1711457

