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Abstract: Component-based software metrics are used to measure the quality and risk of 

component-based software. Measurement begins with an assessment of the task's most critical 

components. Split them into sub-characteristics or characteristics thereafter. As a consequence, 

these more subtle sub-features begin to emerge in characteristics. This definition-based metric 

property is used to get the required metrics. Prior studies have studied software metrics based on 

component composition. Too little research has been done on component-based software metrics 

so far. Studies like this have a very specific focus. Programming modules were compared in terms 

of usefulness, new features and the difficulty and complexity of configuring the modules. In the 

suggested research, formulas for calculating the functional, coupling, and constraint complexity 

metrics were studied. 

Keyword: CBSE, CBD, Software component, Software reusability, Software metric. 

[1] INTRODUCTION 

Component-based architecture allows for the reuse of classes (components required to construct 

an application). The spiral concept is used in a variety of ways in this design. We may thank 

evolution for this concept. As a result, iterative software design is a viable option. Component-

based development (CBD) simplifies the design and development of computer systems by using 

reusable software components. CBD has shifted its focus to software system design. 

Component Based Software Engineering (CBSE) 

Component-based software engineering (CBSE), sometimes known as components-based 

development (CBD), is a branch of software engineering that focuses on decoupling the numerous 

components that make up an agiven software system. This is a reuse-based technique for putting 
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together systems of loosely connected components. In both the short and long term, this technique 

strives to bring about a broad range of advantages for both the software itself and the sponsoring 

corporations. 

There is a strong connection between components and service-oriented architecture. Adding new 

features to an existing component is one of the benefits of using a web service. Web services and 

service-oriented architectures, for example, are examples of this (SOA). 

 

 

 

 

 

 

 

 

 

Fig 1 Component Based Software Engineering (CBSE) 

Software Component  

Software packages, online services, web resources, and modules are the most frequent discrete 

components of software (or data). The system's processes are divided into distinct components to 

guarantee that all data and functions inside each component are semantically connected (just as 

with the contents of classes). Be a consequence of this mindset, components are typically referred 

to as modular and cohesive. 

Objects (rather than classes), collections of objects (as in object-oriented programming), and some 

type of binary or textual interface description language are all popular forms of software 

components that may operate independently of each other on a computer (IDL). The component's 

functioning is not affected by changes to the code. 

Component model  

Specifying the characteristics of components as well as how to put them together is the purpose of 

a component model. 

There have been many different component models proposed by researchers and practitioners over 

the last several decades. This section offers a breakdown of the existing models of components. 
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The EJB, COM,.NET, X-MAN, and CORBA models from the EJB family of JavaBean 

implementations are examples of component models. 

Software metric 

Software metrics come in a wide variety of forms and may be used to assess the overall quality of 

a software system or process. Despite the fact that metrics are functions and measures are the 

values that are the consequence of applying metrics, the terms are commonly used interchangeably. 

Since quantitative metrics are essential in many domains, computer science practitioners and 

theoreticians are always trying to apply similar methodologies to software development. For a 

number of purposes, including budget and schedule planning, cost estimates, quality assurance, 

and software debugging and optimization, we need measures that are precise and repeatable. We 

also need to know how to best allocate work to our staff.. 

Software reusability 

To be reusable, assets like code, components, test suites, designs, and documentation must have 

been previously generated in the context of software engineering or computer science. Reusability 

encompasses the whole process of creating, packing, distributing, installing, configuring, 

deploying, maintaining, and upgrading. Software that seems to be reusable from a design 

viewpoint may not really be reusable if these issues are addressed. Reusability is the ability of a 

piece of software to be reused in the future. 

[2] LITERATURE REVIEW 

Earlier this year, Sonal Geholt [1] published a comparison of several complexity measures created 

by various writers. The complexity of component-based software is measured using a variety of 

metrics, including instance variables, instance methods, control flow, and interface techniques, 

among others. The comparison is based on a number of quality parameters, such as maintainability, 

Integrity, complexity, testability, customizability, and so on. 

In 2014, Chander Diwaker [2] resulted in increased production, greater quality, reduced 

development time and costs. Metrics for software quality play a significant role in assessing and 

enhancing the overall quality of software products. Software development and deployment 

methodologies are guided by these metrics. To achieve quality and manage risk in a component-

based system, metrics are used to assess the elements that influence risk and quality. 

Component reuse and cost-savings advantages of component reusability were highlighted by 

Lovepreet Kaur [3] in a paper published in 2015. Developers that want to create reusable software 

products or salvage useable components from old software might follow these guidelines. CED-

adopting companies may also reap the benefits of these principles for quality and productivity 

development. 
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[4] Various aspects of CBSE with its associated metrics were outlined by Kiran Narang in 2018. 

Using metrics, a developer is able to determine the risk factor and lower it prior to the building of 

a system. They require metrics to evaluate the quality, reusability, functionality, portability, and 

understandability of each component they choose from the market. Many scholars have established 

many measures for CBSE. Only a handful of them have any practical use. 

Component-based metrics were the focus of Sakshi Patel's [5] research in 2016. On the basis of 

both functional and non-functional features of software, this article compares several component-

based metrics and discusses how this new method differs from any previous strategy for software 

development.. Component-based metrics are designed to promote reusability and save 

development costs and time. Quality and risk management are assessed using these measures. 

Using black box components, Sachin Kumar [6] suggested a method in 2014 for determining the 

coupling complexity of software. On the basis of the interconnections between components, the 

suggested metric is presented. Traditional metrics, on the other hand, don't apply to a black box 

component since the component's source code is unavailable. Components' black box nature makes 

it impossible to gauge software's complexity. 

Software matrixes were developed in 2012 by Prakriti Trivedi [7] to verify the relationship 

between software components and applications. [7] After employing this component, the quality 

of the programme depends on how strong this relationship is. Finally, the aggregate metrics will 

provide the ultimate result in terms of the component's application's boundless. When employing 

these components, the most important question is whether or whether they are advantageous or 

not. The same question is being addressed in this planned effort. 

It was in 2012 that Majdi Abdellatief [8] published a thorough mapping analysis of different 

metrics that had been developed to quantify the quality of CBSS and its components. [8] Seventeen 

ideas may be used to assess CBSSs as a whole, while fourteen proposals could be used to assess 

particular components without the others. Software components that were measured are evaluated 

and explained in detail. A small number of the measures that have been put out are well defined. 

The original studies' quality evaluation found several flaws and provided advice for how to 

strengthen and broaden the acceptability of metrics. Although it is difficult to quantify a CBSS 

and its components, this remains a problem. So much work must be put into developing a better 

method of evaluating in the future. 

According to Majdi Abdellatief [9], structural design of Component-based software systems was 

one of Majdi's primary concerns in 2012. (CBSS). Based on the notion of Component Information 

Flow, two sets of metrics, namely Component Information Flow Metrics and Component Coupling 

Metrics, are provided. We also explore the reasons for and potential usage of system- and 

component-level metrics. The suggested measures seem to be quite intuitive, according on 

preliminary findings from our ongoing empirical study. 
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This paradigm was first proposed by Danail Hristov [10] in 2012, with the goal of organizing our 

collection of reusability indicators for component-based software development. The lack of a 

documented paradigm for describing software reusability and establishing relevant metrics has 

been frustrating. However, the adoption of component reuse in software development will be 

simplified and accelerated if a thorough understanding of reusability and appropriate and simple 

metrics for quantifying reusability are provided. 

 

Table 1 Literature survey  

S 

no. 

Author / year Title Methodology Objectives 

1 Sonal Gehlot / 

2019 

Complexity Metrics for 

Component Based 

Software — A 

Comparative Study 

CBSE Matrics To perform 

comparative analysis of 

CBSE metric 

2 Chander 

Diwaker / 2019 

Metrics Used In 

Component Based 

Software Engineering 

CBSE matrix To consider the metrics 

used  in software 

engineering 

3 Lovepreet 

Kaur / 2015 

Quality Enhancement in 

Reusable Issues in 

Component – Based 

Development 

Software Matrics To improve quality for 

reusable components. 

4 Kiran Narang / 

2018 

Comparative Analysis of 

Component Based 

Software Engineering 

Metrics 

Software Matrics To perform 

comparative analysis of 

CBSE metrics 

5 Sakshi Patel / 

2016 

A Study of Component 

Based Software System 

Software system Considering need and 

scope of CBSE 

6 Sachin Kumar / 

2014 

Coupling Metric to 

Measure the Complexity 

of Component Based 

Software through 

Interfaces 

CBSE Matrics Considering coupling 

metric to check the 

complexity of CBSE 

7 Prakriti Trivedi 

/ 2012 

Software Metrics to 

Estimate Software 

Quality using Software 

Component Reusability 

Software Metrics Calculating quality of 

software with support 

of component 

reusability. 

8 Majdi 

Abdellatief / 

2012 

A mapping study to 

investigate component-

based software system 

metrics 

Software Metrics To study need of 

component based 

metrics 
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9 Majdi 

Abdellatief / 

2012 

Component-based 

Software System 

Dependency Metrics 

based on Component 

Information Flow 

Measurements 

CBSE Matrics Considering 

dependency of metrics 

over component 

information flow 

10 Danail Hristov 

/ 2012 

Structuring Software 

Reusability Metrics for 

Component-Based 

Software Development 

Software Metrics To structure the metrics 

for reusability 

 

[3] CBSE MATRIX 

Component based software metrics are those metrics which will measure the quality and manage 

the risk of component based software. To build an efficient metrics, first identify the main 

characteristics of work. After that divide them or break down into sub-characteristics [15]. Then 

these refined sub characteristics are appearing in attributes. These attributes based on metric 

definitions are used to get required metrics. 

 

A. Metric Suite 

This metrics structure is represented in the form of tree. In component based software engineering 

there are two types of metrics: 1) Non-functional Metrics 2) Functional Metrics[16-32]. 
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Fig 2 CBSE Matrices representation 

In this we are having various metrics based on various dimensions.  

 

i) Suitability Metrics: The degree to which components fulfill the confine requirement. The 

component suitability is the nature that can be determined after the component gets installed [16]. 

For suitability there are two types of metrics based on different perspective[32-48]:  

 

Required Functionality (RF): It comes under producer perspective. In this only required 

functionality need to be checked that must be satisfied. 

RF =  
No.of useful functionality components that are provided

Total  count of functionalities required by the CBSE
  

 

Increase in the value of RF will increase suitability of component. 

 

Extra Functionality (EF): It comes under consumer perspective. In this extra functionalities are 

needed to be checked.EF =  
No.of extra functionalities given by the Components 

Total no.of functionalities necessary by component based system
 

As the value of EF decrease the suitability will increase because increase in EF will increase the 

unwanted functionalities. 

 

 

ii) Complexity: complexity of software depends upon its complexity attributes such as coupling, 

cohesion etc. The quality of software components, its interfaces and specifications are computed 

by complexity metrics. The more demand of quality will automatically increase the complexity of 

component. In this one metrics is based on producer perspective and two for consumer’s 

perspective.  

 

Component coupling (COC): It comes under producer perspective. In this internal structure of 

component is checked i.e. classes and relationship between them. 

COC =  
No. of other components sharing attribute or methods 

Total No. of possible sharing pairs in the component − based application
 

 

Interface complexity: It comes under consumer perspective. The quality characteristics such as 

usability, portability, performance and reusability are evaluated by complexity metrics [5]. More 

complex interface from user point of view will create testing and debugging problem. In this there 

are two metrics: 

 

Constraints complexity (CTC): 

CTC =  
No. of constraints 

No. of properties and operation in an Interface
 

 

Configuration Complexity (CFC): 
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CFC =  
No. of configuration

No. of context of use of the components 
 

 

iii) Component coupling complexity metrics for black box component:  

CCCM (BB)  =  FICM (BB) +  FOCM (BB)  

Where FICM (BB) is Fan-in complexity Metric used to compute the coupling complexity due to 

received information from additional component and FOCM is fan-out complexity metrics which 

is used to compute the complexity because of leaving information 

 

iv) Reusability: The degree to which a component can be used reused by software and some given 

application. It is the quality of software to improve productivity. There are various sub factors of 

reusability as shown in figure. 

 

 

 

 

 

 

 

 

 

 

Figure 3 Component Reusability Tree 

 

Portability: In this external dependency is evaluated. 

ED =  
Portability: In this external dependency is evaluated.

Total No. of methods (Read/ Write) 
 

 

Confidence: In this maturity level of reusable component is calculated 

Mat =  DF +  CR  

DF= No. of faults detected  

CR= No. of changes Requests 

[4] PROPOSED MODEL  

In proposed model two different programming modules have been considered to compare the 

required functionality, extra functionality, component coupling, constraints complexity, 

configuration complexity. In proposed work the equations used to find the functionality, coupling, 

constraint complexity configuration complexity metric have been considered.  

Reusability 

Portability Confidence 

External dependence 
Maturity  Certification  
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Fig 4 Process flow of proposed work 

Table 2 Chart of functionality components, attribute, constraint, possible sharing pairs along 

with external dependency in case of library management and inventory management system. 

 Library management 

Programming module 

Inventory management 

Programming module 

Count of useful functionality 

components that are provided 

30 45 

Total  count of functionalities 

required by the CBSE 

50 60 

Count of extra functionalities 

given by the Components 

10 9 

Total count of functionalities 

necessary by component 

based system 

15 10 

Count of other components 

sharing attribute or methods 

14 18 

Total count of possible 

sharing pairs in the 

component-based application 

20 25 

Count of constraints 24 35 

Count of properties and 

operation in an Interface 

40 45 

Count of configuration 5 6 

Count of context of use of the 

components 

10 10 

•Data collection

•Functionality components, attribute, constraint, possible sharing pairs 
along with external dependency .

Phase 1

•Data classification

•Collected dataset is systematically classified for library management and 
inventory management system

Phase 2

•Metric comutation

•Calculate Suitability Metrics, Complexity metric and external dependency 
metrics

Phase 3

•Comparison

•Compare the calculated metrics in both casesPhase 4
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Portability of external 

dependency 

17 23 

Total count of methods 

(Read/ Write) 

80 85 

 

[5] RESLUT AND DISCUSION 

This section has focused on finding the suitability, complexity, external dependency for library 

management and inventory management. 

5.1 SUITABILITY METRIC 

Simulation of Suitability metric for Library management Programming module 

 

RF (a) =  
No.of useful functionality components that are provided

Total  count of functionalities required by the CBSE
  

RF=30/50=0.6 

 

 

EF (a) =  
No. of extra functionalities given by the Components 

Total no. of functionalities necessary by component based system
 

EF=10/15=0.667 

Simulation of Suitability metric for Inventory management Programming module 

 

RF (b) =  
No.of useful functionality components that are provided

Total  count of functionalities required by the CBSE
  

RF= 45/60=0.75 

 

EF (b) =  
No. of extra functionalities given by the Components 

Total no. of functionalities necessary by component based system
 

EF=9/10=0.9 

5.2 COMPLEXITY METRIC 

Simulation of Complexity metric for Library management Programming module 

 

Component coupling (COC):  

COC (a)=  
No.of other components sharing attribute or methods 

Total No.of possible sharing pairs in the component−based application
 

COC=14/20=0.7 
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Constraints complexity (CTC): 

CTC (a) =  
No. of constraints 

No. of properties and operation in an Interface
 

CTC=24/40=0.6 

 

Configuration Complexity (CFC): 

CFC (a) =  
No. of configuration

No. of context of use of the components 
 

CFC=5/10=0.5 

Simulation of Complexity metric for Inventory management Programming module 

 

Component coupling (COC):  

 

COC (b)=  
No.of other components sharing attribute or methods 

Total No.of possible sharing pairs in the component−based application
 

COC=18/25=0.72 

 

Constraints complexity (CTC): 

CTC (b) =  
No. of constraints 

No. of properties and operation in an Interface
 

CTC=35/45=0.778 

 

Configuration Complexity (CFC): 

CFC(b) =  
No. of configuration

No. of context of use of the components 
 

CFC=6/10=0.6 

5.3 EXTERNAL DEPENDENCY 

External dependency for Library management Programming module 

ED(a) =  
Portability: In this external dependency is evaluated.

Total No. of methods (Read/ Write) 
 

ED=17/80=0.2125 

External dependency for Inventory management Programming module 

ED(b) =  
Portability: In this external dependency is evaluated.

Total No. of methods (Read/ Write) 
 

ED=23/85=0.27 

5.4 COMPARATIVE ANALYSIS 
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This section has presented comparative analysis of required functionality, extra 

functionality,  

Table 3 Comparative analysis of programming Module for RF 

Programming Module Required Functionality (RF) 

Library Management 0.60 

Inventory Management 0.75 

 

 

Fig 5 Comparative analysis of programming Module for Required functionality 

Table 4 Comparative analysis of programming Module for EF 

Programming module Extra Functionality (EF) 

Library Management 0.67 

Inventory Management 0.90 

 

 

Fig 6 Comparative analysis of programming Module for Extra Functionality 
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Table 5 Comparative analysis of programming Module for Component coupling 

Programming module Component Coupling (COC) 

Library Management 0.70 

Inventory Management 0.72 

 

Fig 7 Comparative analysis of programming Module for COC 

Table 6 Comparative analysis of programming Module for CTC 

Programming Module Constraints Complexity (CTC) 

Library Management 0.60 

Inventory Management 0.78 

 

Fig 8 Comparative analysis of programming Module for CTC 
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Table 7 Comparative analysis of programming Module for CFC 

Programming Module Configuration Complexity (CFC) 

Library Management 0.50 

Inventory Management 0.60 

 

Fig 9 Comparative analysis of programming Module for EF 

Table 8 Comparative analysis of programming Module for ED 

Programming Module External Dependency (ED) 

Library Management 0.21 

Inventory Management 0.27 

 

Fig 10 Comparative analysis of programming Module for ED 
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[6] CONCLUSION 

In proposed work, we are representing the simulation process at different metrics. At Suitability 

metric, simulation of RF  is 0.60 and EF is 0.67 for Library management Programming module 

and RF is 0.75 and EF is 0.9 for Inventory management Programming module. At Complexity 

Metric, Component coupling (COC) is 0.70, Constraints complexity (CTC)is 0.60 and 

Configuration Complexity (CFC) is 0.72 for Library management Programming module and 

Component coupling (COC) is 0.778, Constraints complexity (CTC)is 0.60 and Configuration 

Complexity (CFC) is 0.60 for Inventory management Programming module. At External 

Dependency, for Library management Programming module is 0.2125 and for Inventory 

management Programming module is 0.27. 
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